IAS HEP Conference, HKUST January 21-24, 2019

The Electron-Ion Collider eRHIC

François Méot Collider-Accelerator Department Brookhaven National Laboratory

With much input from BNL eRHIC team Electron Ion Collider – eRHIC

BROOKHAVEN

ENERGY S

A Pre-conceptual Design Report

fully describes eRHIC design and R&D - released July 2018.

- A ~770 page document which
- presents accelerator design
- summarizes outcomes of accelerator physics studies
- includes description of accelerator systems, providing basis for ongoing cost estimate
- evaluates required improvements in BNL/RHIC infrastructure

The public release will be coordinated with the Lab

management and DOE.

Physics at eRHIC

US EIC White Paper, "Electron Ion Collider: The Next QCD Frontier." (2014)

Polarization, ions, together with its luminosity and \sqrt{s} coverage, make the US-EIC a unique facility.

3

Design Goals

- Collision luminosity ~10³³-10³⁴ cm⁻²s⁻¹ (exceeding HERA luminosity by 2 orders of magnitude)
- Electron, proton, ³He and d polarization **>70%**;
 - electrons: longitudinal at IPs;
 - hadrons: longitudinal and transverse;
 - complex e-h spin patterns
- Large acceptance detector with elements integrated in the IR for forward particle detection
- Wide center-of-mass energy span: 29-140 GeV, e-p 29-89 GeV/n, e-ion

eRHIC Design Concept

Blue RHIC Ring

stays in place

eRHIC Uses Ring

Rapid Cycling Synchrotron (RCS)

Electron Storage Ring

♦ Based on RHIC ion complex:

- Polarized protons from OPPIS
- Ions, polarized 3He and d, from EBIS
- Booster and AGS injectors

♦ Acceleration/storage in RHIC Yellow

Adding an electron complex, in RHIC tunnel

- Polarized electron source
- ♦ 400 MeV linac
- ♦ Rapid-cycling synchrotron
- ♦ 5 to 18 GeV storage ring

♦ Large acceptance detectors

• At IP6 and IP8

eRHIC Luminosity

in terms of its limiting factors

eRHIC luminosity / summary

blue: Moderate luminosity (no cooling) 10 **Beam-beam limited** 275x10GeV² uminosity [10³³ cm⁻² s⁻¹] 275x18Ge¥² 10 MW SR limit Sbace charge limited 41x5GeV² 0.1 20 40 60 100 120 140 160 80 Center of Mass Energy [GeV]

green: Nominal luminosity (cooling)

Parameters:

- [♦] Nominal luminosity, 10³⁴:
 - small hadron emittances (strong hadron cooling mitigates IBS)
 - 1320 bunch store
 - 10 MW SR
- [♦] Moderate luminosity, 4.4*10³³:
 - 660 bunch store
 - e, p vertical emittances relaxed

Parameters for "initial luminosity" of 10³³ at 105 GeV E_{см}:

- 290 bunch store
- lower p and e beam current (3 MW SR)

"Initial luminosity": Parameters achievable after a short time of commissioning, still satisfying the minimum requirements of the EIC physics program as described in the EIC White Paper.

Interaction region for luminosity goals

Large detector acceptance

 \rightarrow no accelerator components within ±4.5m of IP

- Strong focusing at IP
- 22 mrad (crab-)crossing, for
 - space for forward n detector
 - & rear luminosity γ-detector,
 - - synchrotron radiation clearance
 - short-range separation
- Management of synchrotron radiation:
 - \diamond no electron bends on the forward side
 - Iarge aperture electron magnets on rear side absorbing SR far from IP
 - masks against backscattered SR photons
- Electron chicane on rear side, for
 - Iuminosity measurements and electron tagging

IR Magnet Developments

Q1pF, active shield

BNL/Jlab R&D effort: designing, building and testing a short prototype based on existing Nb₃Sn coils (from LARP work) actively shielded by new NbTi coil.

B0 hadron spectrometer magnet, 1.3 T. Electron beam path and Q1EF quadrupole are encompassed within active shield (SC dipole).

Q1R, Tapered coil 0.12 Synchrotron Fan Quadrupole 0.1 **Return Yoke** 0.08 0.06 0.04 е 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 **Electrons Q1ER** Hadrons Q1PR -0.12 -0.1 0.1 0.15 02 -0.05 0 0.05

Nearly constant gradient along entire length, although tappered coil

Tappered for SR

IR Crab Cavity R&D

The experience from the LHC crab cavity program directly benefits eRHIC design (frequencies are similar).

- Same designs for e and h beams
- Frequency 338 MHz = $12x360xf_{rev}$
- Voltage, ion / electron: up to 12 / 5 MV

Cavity design at BNL. Prototype under experimentation at CERN SPS.

New systems

Design R&D

400 MeV Polarized Electron Injector

Parameter	Value
Charge [nC]	10
Frequency [Hz]	1
Energy [MeV]	400
Normalized emittance [mm-mrad]	55
Bunch length [psec]	6
dp/p	10^{-2}
polarization [%]	85

Mott polarimeter

Simulations show that the 2.856 GHz 400 MeV pre-injector meets the requirements.

BNL 1ST inverted gun in fabrication

Sub-R&D items:

- Achieve and measure XHV
- High power laser
- Ion back bombardment
- Surface charge limit measurement
- Lifetime as the function of charge
- Beam halo reduction studies
- Cathode cooling

- Experience from both SLC PES high charge gun and JLab inverted guns.
- eRHIC requires: 10 nC, 1 Hz, polarization levels ~ SLC's.

Parameter	SLC	eRHIC
Polarization [%]	85	85
Voltage [kV]	90-120	100-350
Bunch charge [nC]	9-16	3-10
Repetition rate [Hz]	120	1
Bunch length [ns]	2	1-2

Spin considerations in pre-injector

RCS – Full Energy Injector

- Accelerates 400 MeV, 10 nC bunches from the linac, to full collision energy, 5-18 GeV 100~200 ms acceleration ramp & 1 Hz repetition rate
- RF system: normal-conducting 563 MHz cavities (located at IR10), total voltage 72 MV.
- Stainless steel vacuum chamber

Polarization:

• Polarization loss during the ramp to 18 GeV, including 1 mm rms orbit error, is <2%.

* Expand a circular 96-period ring, onto RHIC 6-fold footprint

* Choose [Qy]=51 to avoid resonances aγ = kP ± [Q_y]

Electron Ion Collider – eRHIC

Rapid Cycling Synchrotron (RCS) Blue RHIC Ring Yellow RHIC Ring

Electron Storage Ring

- Based on accelerator technologies of Bfactories and HERA
- Polarization up to 85% at injection, 70% average
- Composed of six FODO arcs, 60° /cell for 5 & 10 GeV and 90° /cell at 18 GeV
- "Super-bend" arc bends for emittance and damping decrement control (1.25x10⁻⁴) to allow large beam-beam tune shift parameter

Storage Ring Component Design

Various components have been subject to preliminary design

- 2-cell, 2K cryomodule, 563 MHz, 3MV/cell
- 12 cryomodules at 10 MW SR limit
- 2x 500 kW adjustable fundamental power couplers.
- 4x SiC Beamline HOM Absorbers
- Multibeam IOT power source.

Vacuum chamber

- from CuCrZr Alloy Good thermal and mechanical properties, easily available at reasonable price
- Integrated NEG pumping

Electron Polarization at Store

• Spin diffusion:

τ_D versus ring energy setting:

 $r_{y}, e^{RTC} \leftarrow storage ring, 18 SeV$ RunXXX/rgpubi.fai [TETLinRegTauFromRun.FaiFiles 38.8 < $e_{2kel} < 41.2$ 40 bins, 0.5xbeam $a\sigma_{p}$ 80 bins, full $a\sigma_{p}$

- Average polarization:
 - $T_{eq} = (1/T_{ST} + 1/T_{D})^{-1}$ and $T_{ST} \sim 30$ min., $T_{D} \sim 60$ min. yield $T_{eq} = 20$ min.
 - P_{eq}=P_{ST} * τ_{eq}/τ_{sτ} and P_{ST} ~ 90% yield bunch P_{eq} = 60%
 - P(0) ~ 85% and P $_{eq}$ = 60% \rightarrow compatible with store <P> = 70%

Hadrons: Present RHIC Complex

\$2.5 bln RHIC hadron complex:

- 4.2K cryogenic Facility
- 3.8 km tunnel
- Service buildings outside the tunnel
- Detector Halls STAR and PHENIX
- Only place in the world with high energy polarized proton beams

• Collided dxAu, CuxCu, UxU, pxAl, etc.

Machine performance increases over the years through improvement/upgrade projects

Increasing Proton Intensity and Repetition Rate

Proton parameters	Present RHIC	eRHIC nominal	Level of eRHIC proton current is
Beam current, mA	330	1000	Similar to HL-LHC upgrade.
Bunch frequency, MHz	9.4	112.6	
Peak current, A	12	24	

Cryo-load

from short-bunch induced resistive heating: reduce to <1 W/m

In-situ copper coating of RHIC stainless steel pipe

Magnetron mole for coating long narrow tubes has been designed and built.

Electron cloud

- **Beam scrubbing** is an efficient tool based on LHC experience
- Under evaluation, to reduce SEY (<1.2):
 - Amorphous C coating (using the tooling developed for Cu-coating)
 - Laser-engineered grooving

Required hardware upgrades:

- New injection kickers (<12 ns rise time)
- RF system upgrade (bunch splitting and compression

State-of-the-art Polarization at RHIC

Methods to accelerate and manipulate polarized

bunches in RHIC:

- 2 full snakes to preserve polarization during energy ramp

- 2 pairs of rotators control orientation of polarization at IP6 and IP8
- orbit and betatron tune control

State-of-the-art:

♦ Up to 60% polarization at 255 GeV,

1.8×10¹¹ protons/bunch to experiments,

♦ At 2.8×10¹¹ p/b : 66% polarization out of AGS

(charge-induced vertical emittance increase).

Proton and ³He polarization at eRHIC

- Achieve > 70% out of AGS at 2.8×10¹¹ ppb (vs. 66% today): gain from emittance preservation and higher source polarization.
- Achieve ~100% polarization transmission to 275 GeV:
- \diamond Today's 100% transmission to 100 GeV and \sim 15% loss to 255 GeV indicate resonance strength threshold in 0.18 \sim 0.45.
- ♦ Snake efficiency is \propto N snake \rightarrow 6 snakes push threshold beyond 3 × 0.18, well > 0.45.

Figure 5.26: Zgoubi simulation results with various snake combinations and beam emittances for intrinsic resonances at $G\gamma = -411 + Q$ ($\gamma \approx 91$) and $G\gamma = -393 - Q$ ($\gamma \approx 101$)

- A 6-snake arrangement yields 100% transmission
 - of p, beyond 275 GeV
 - of ³He, to 170 GeV/n region

Polarized proton & ³He²⁺ in RHIC Injectors

- An AC dipole is under installation in Booster
 - to overcome intrinsic spin resonances.
 - This opens up possibility of raising injection energy in the AGS for improved polarization transmission, both p and 3He.
- Demonstration/AC-dipole operation with polarized protons next Fall, 2019

er – eRHI

Helium-3 Source

- Requirements:
 - 2x10¹¹ ³He²⁺ in a 10 µs pulse (~4.0 mA)
 - Polarization > 70%
 - Spin flip every pulse
 - Compatibility with EBIS operation for heavy ion physics.

EBIS Upgrade with New Injector Solenoid for Polarized ³He⁺⁺ ion production

Electron Ion Collider – eRHIC

 Plan: EBIS upgrade including injector solenoid, Operation 2019-2020.

Current Setup of Extended EBIS Solenoids

Extended EBIS test setup

Ongoing Design Studies

Increase IR crossing angle to 25 mrad:

- reduce magnet design challenges (no NbSn₃ needed; BNL Direct Wind can be used on nearly all magnets)
- more compact design (smaller electron beta-max)
- Use both RHIC rings, for
 (i) acceleration to top energy and
 (ii) storage
 - minimize store interruptions
 - increase of average luminosity even without high energy cooling
- e-storage ring vertically stacked above the hadron ring: more efficient use of the tunnel space.

Strong Hadron Cooling R&D

Goal: τ_{cool} < 1h at 275 GeV

Different methods of strong hadron cooling are being explored.

DOE funded studies are underway in different labs (ANL,BNL, JLAB, FNAL,SLAC)

Micro-bunched electron beam cooling

with 2 plasma amplification stages is being developed by BNL/SLAC collaboration.

Required cooling rates can be achieved with ~100 mA electron current in 150 MeV 3-turn ERL-based accelerator

CeC with FEL amplifier PoP experiment has been carried on at RHIC.

Possible continuation of the experiment using Plasma-Cascade amplification.

Bunched Beam Electron Cooling based on an electron storage ring also explored Ampere scale beam current is required

High-Current ERL R&D

- The CBETA facility is under construction in Cornell University (a BNL-Cornell collaboration)
- Successful test of beam through a fractional FFA arc was performed in April-May, 2018.
- Full commissioning effort starts March 2019.

Thank you for your attention

Backup slides

The eRHIC Electron-Ion Collider is recognized to have the potential to realize new understanding and discoveries regarding the nature of visible matter in our universe

 The 2015 DOE/NSF Long Range Plan (LRP) for Nuclear Science
 [2] recommends an EIC as the highest priority new facility to be initiated for the field

 The 2018 National Academies of Sciences, Engineering, and Medicine report, "An Assessment of U.S.-Based Electron-Ion ColliderScience" [3] states:

"In summary, the committee concludes that an EIC is timely and has the support of the nuclear science community."

In summary: the new elements to be added to the existing RHIC complex

- A low frequency photocathode e-gun delivering 10 nC bunches, >80% polarized, at 1 Hz repetition rate
- A 400 MeV normal-conducting S-band LINAC
- A 5 to 18 GeV rapid cycling synchrotron (RCS) in the RHIC tunnel
- A high intensity, spin-transparent 5 to 18 GeV electron storage ring in the RHIC tunnel with superconducting RF cavities

Electron Ion Collider – eRHIC

• A high luminosity interaction region that allows for a full acceptance detector and for longitudinal polarization

A second interaction region is possible and feasible

A 150 MeV CW ERL for strong hadron cooling

eRHIC Hadron Requirements

- Beam parameter requirements:
 - Higher number of bunches (290; almost tripled from presently used 110)
 - Smaller bunch length (10 cm instead of present 40 cm)
 - Flat beams
 - Higher energy (275 GeV instead of present 255 GeV)
 - High polarization (70%) of protons and ³He ions
- · Required ring modifications
 - Removal of DX magnets (to allow for higher energy) (WBS 6.07.05)
 - Interaction Region straights (from D6 to D6) (WBS 6.06.02)
 - Injection system upgrade (for increased number of bunches)
 - Frequency matching with electron beam (by using shorter arc for 41 GeV)
 - RF system upgrade (for shorter bunches)
 - Increase of number of Snakes (to reach required polarization)
 - Beam instrumentation upgrade (for higher peak current)
 - Copper and amorphous-Carbon beam pipe coating (for reducing cryoheat load and electron cloud effects)

Polarized deuteron at eRHIC

- Could happen first (whereas helion is priority)
- G = -0.14
 - weak resonances, $|\epsilon_{intr.}| < 0.002$
 - in small number, $|G\gamma|$ range: $1.9 \rightarrow 20.9$
- Techniques foreseen for transmission:
 - harmonic orbit correction/excitation (cf. Booster, AGS),
 - partial snake (15 T.m...), AC dipole
- Longitudinal polarization at IP: harmonic orbit, at integer Gγ (with proper phasing of y-normal spin closed orbit n₀)

Electron Spin Rotator In Collision IRs

 Spin matching, a set of additional constraints to the IR optical setting, is required for preserving polarization in the presence of the rotators.

IR Design Developments

Helium-3 Polarization at eRHIC

Transverse ³He bunch emittance is comparable to proton's (2.5 μm)

• Resonances are stronger by $(G_{_{3He}}/Gp)^{1.5} = 4.18 / 1.79 \approx 1.5$, yet snakes are $G_{_{3He}}/Gp \approx 2.3$ as strong.

- On the other hand:
- resonance spectrum is denser

- imperfection and intrinsic resonances overlap, this affects polarization (excites snake resonances)

Simulations show that

- 2 snakes do not maintain polarization upon crossing G γ = -411 + Q_y ($\gamma \approx 91$) or G γ = -393 - Q_y ($\gamma \approx 101$).

- a 6-snake configuration preserves polarization towards $G\gamma = 717 + Qy$ ($\gamma \approx 180$) region.

tances for intrinsic resonances at $G\gamma = -411 + Q$ ($\gamma \approx 91$) and $G\gamma = -393 - Q$ ($\gamma \approx 101$)

Critical Decision CD0: based on pCDR, declare mission need for an EIC, supported by a echnical plan to realize it

CD1: based on CDR.

Ν	Nominal luminosity (hadron cooling)		Moderate Iuminosity		"Initial Iuminosity"	
Parameter	hadron	electron	hadron	electron	hadron	electron
Center-of-Mass Energy [GeV]	104.9		105		104.9	
Energy [GeV]	275	10	275	10	275	10
Number of Bunches	1320		660		290	
Particles per Bunch [10 ⁴⁰]	0.6	1:51	1.05	3.0	1.02	2:2 0
Beam Current [A]	1.0	2.5	0.87	2.48	0.37	0.8
Horizontal Emittance [nm]	9.2	20.0	13.9	20	17.9	20.0
Vertical Emittance [nm]	1.3 coo	ling 1.0	8.5 No 4.9		8.5	4.2
Hor. β -function at IP β_x^* [cm]	90	42	90	63	90	81
Vert. β -function at IP β_y^* [cm]	4.0	5.0	5.9	10.4	5.9	12.1
Hor./Vert. Fractional Betatron Tunes	0.305/0.31	0.08/0.06			0.3/0.31	0.09/0.12
Horizontal Divergence $d\sigma_x^*/ds$ [mrad]	0.101	0.219	0.124	0.179	0.141	0.157
Vertical Divergence $d\sigma_y^*/ds$ [mrad]	0.179	0.143	0.380	0.216	0.380	0.186
Horizontal Beam-Beam Parameter ξ_x	0.013	0.064	0.015	0.1	0.0079	0.1
Vertical Beam-Beam Parameter ξ_y	0.007	0.1	0.005	0.083	0.0029	0.085
IBS Growth Time longitudinal/horizontal [hr]	2.19/2.06	-	10.1/9.2	-	8/18	-
Synchrotron Radiation Power [MW]	-	9.18	-	9.1	-	2.95
Bunch Length [cm]	5	1.9	7	1.9	9.9	1.9
Hourglass and Crab Reduction Factor [16]	0.8	37			0	.74
Luminosity $[10^{34} \text{ cm}^{-2} \text{sec}^{-1}]$)5	0.44		0.1	05

"Initial luminosity" parameters: Parameters achievable after a short time of commissioning, still satisfying the minimum requirements of the EIC physics program as described in the EIC White Paper.

Au-e

maximum luminosity parameters (with strong hadron cooling)

Species	Au ion	electron
Energy [GeV]	110	10
Bunch intensity [10 ¹⁰]	0.05	15.1
No. of bunches	1320	
Beam current [A]	0.65	2.5
RMS norm. emit., $h/v [\mu m]$	5.0/0.36	391/20
RMS emittance, h/v [nm]	43/3.1	20/1
β*, h/v [cm]	90/4	193/12
IP RMS beam size, $h/v [\mu m]$	197/11.1	
K_x	17.9	
RMS $\Delta \theta$, h/v [μ rad]	219/278	102/92
BB parameter, h/v [10 $^{-3}$]	3/2	43/47
Long. bunch area [eV·sec]	0.3	
RMS bunch length [cm]	7	1.9
RMS $\Delta p / p [10^{-4}]$	6.2	5.5
Max. space charge	0.004	negl.
Piwinski angle [rad]	3.9	1.1
Long. IBS time [h]	0.30	
Transv. IBS time [h]	0.77	
Hourglass and Crab reduction factor	0.85	
e-N Luminosity [10 ³³ cm ⁻² sec ⁻¹]	4.72	